The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336527 a(1) = 1; a(2) = 2; for n > 2, a(n) is the least number > a(n-1) whose binary representation is uniquely the concatenation of the binary representations of two distinct earlier terms. 2
 1, 2, 5, 6, 11, 14, 21, 23, 26, 27, 29, 30, 47, 62, 85, 86, 87, 90, 95, 106, 107, 111, 117, 122, 125, 126, 171, 174, 183, 186, 187, 191, 219, 234, 237, 238, 239, 246, 251, 254, 341, 347, 349, 351, 363, 383, 426, 431, 442, 447, 470, 471, 474, 479, 491, 495, 501 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence is inspired by Ulam sequence (A002858). LINKS Rémy Sigrist, Table of n, a(n) for n = 1..10000 Rémy Sigrist, PARI program for A336527 EXAMPLE The first terms, alongside the binary representations of the natural numbers with the corresponding concatenations of distinct smaller terms, are:   n  a(n)  k   bin(k)  concatenations   -  ----  --  ------  --------------   1     1   1       1   2     2   2      10             3      11             4     100   3     5   5     101  10|1   4     6   6     110  1|10             7     111             8    1000             9    1001            10    1010   5    11  11    1011  101|1            12    1100            13    1101  1|101, 110|1   6    14  14    1110  1|110 PROG (PARI) See Links section. CROSSREFS Cf. A002858, A336528 (decimal variant). Sequence in context: A015613 A135013 A239447 * A293398 A180323 A103035 Adjacent sequences:  A336524 A336525 A336526 * A336528 A336529 A336530 KEYWORD nonn,base AUTHOR Rémy Sigrist, Jul 24 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 01:28 EDT 2021. Contains 343143 sequences. (Running on oeis4.)