login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

The least prime s for which there exist primes p, q, r such that phi(p*q*s^n) = phi(r*s^(2n+1)) and sigma(p*q*s^n) = sigma(r*s^(2n+1)).
1

%I #20 Sep 30 2020 09:05:04

%S 2,2,2,2,5,37,13,7,2,19,7,7,2,19,4447,2,2,2,2,5,73,23,37,2,2,19,19,2,2

%N The least prime s for which there exist primes p, q, r such that phi(p*q*s^n) = phi(r*s^(2n+1)) and sigma(p*q*s^n) = sigma(r*s^(2n+1)).

%C This sequence is an inversion of A336485.

%C Let "a and b are similar" mean that for positive integers a and b we have phi(a) = phi(b), tau(a) = tau(b) and sigma(a) = sigma(b).

%C Conjecture: For each positive integer n there are infinitely many primes s such that numbers p*q*s^n and r*s^(2n+1) are similar for some primes p, q, r.

%e a(2) = 2 because for n = 2 and prime s = 2, a = 19*89*s^n and b = 199*s^(2n+1), we have phi(a) = phi(b) and sigma(a) = sigma(b).

%p with(NumberTheory):

%p KS := []; for k to 29 do tf := false;

%p for ii do s := ithprime(ii); c := 2*s^(k+1)+1; cc := (c^2-1)*(1/2); Q := Divisors(cc);

%p for d in Q do q := d+c; if isprime(q) then p := c+cc/(q-c); if p < q then break end if;

%p if isprime(p) then r := 2*(p+q)-c; if isprime(r) then print([k, [p, q], r], s); KS := [op(KS), s]; tf := true; break end if end if end if end do;

%p if tf then break end if end do end do; KS

%o (PARI) is(t, u, x, y) = ispseudoprime(t*x+1) && ispseudoprime(u*y/t+1) && ispseudoprime(x*y+1);

%o a(n) = {my(s=1, t, u); while(s=nextprime(s+1), for(i=0, 1+n\2, t=s^i; fordiv(2*(1+u=s^(n+1)), d, if(is(t, u, 2*u/t+d, 2*t+(2*u+2)/d) || is(t, u, 2*u/t-d, 2*t-(2*u+2)/d), return(s))))); } \\ _Jinyuan Wang_, Sep 30 2020

%Y Cf. A000005, A000010, A000203, A134922, A336485.

%K nonn,more

%O 1,1

%A _Vladimir Letsko_, Jul 23 2020