login
A336469
a(n) = A329697(phi(n)), where A329697 is totally additive with a(2) = 0 and a(p) = 1 + a(p-1) for odd primes.
10
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 1, 2, 0, 2, 0, 1, 0, 1, 1, 2, 2, 1, 0, 1, 1, 3, 1, 1, 2, 3, 0, 3, 1, 0, 1, 2, 2, 1, 1, 2, 2, 3, 0, 2, 2, 2, 0, 1, 1, 3, 0, 2, 1, 3, 1, 2, 2, 1, 2, 2, 1, 3, 0, 3, 1, 2, 1, 0, 3, 2, 1, 2, 1, 2, 2, 2, 3, 2, 0, 1, 3, 2, 1, 2, 0, 2, 1, 1
OFFSET
1,19
LINKS
FORMULA
Additive with a(2^e) = 0, and for odd primes p, a(p^e) = A329697((p - 1)*p^(e-1)) = e*A329697(p) - 1.
a(n) = A329697(n) - A005087(n) = A336396(n) + A046660(A000265(n)).
MATHEMATICA
Array[Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, EulerPhi[#], # != 2^IntegerExponent[#, 2] &] - 1 &, 105] (* Michael De Vlieger, Jul 24 2020 *)
PROG
(PARI)
A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
A336469(n) = A329697(eulerphi(n));
\\ Or alternatively as:
A336469(n) = { my(f = factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, -1 + (f[k, 2]*A329697(f[k, 1])))); };
CROSSREFS
Cf. A003401 (positions of zeros).
Sequence in context: A140081 A280596 A112345 * A265262 A124763 A029372
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 22 2020
STATUS
approved