%I #9 Jul 27 2020 00:24:18
%S 1,3,13,76,571,5309,59341,780149
%N Number of ways to choose a divisor of a divisor, both having distinct prime exponents, of the n-th superprimorial number A006939(n).
%C A number has distinct prime exponents iff its prime signature is strict.
%C The n-th superprimorial or Chernoff number is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).
%e The a(2) = 13 ways:
%e 12/1/1 12/2/1 12/3/1 12/4/1 12/12/1
%e 12/2/2 12/3/3 12/4/2 12/12/2
%e 12/4/4 12/12/3
%e 12/12/4
%e 12/12/12
%t chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
%t strsig[n_]:=UnsameQ@@Last/@FactorInteger[n];
%t Table[Total[Cases[Divisors[chern[n]],d_?strsig:>Count[Divisors[d],e_?strsig]]],{n,0,5}]
%Y A000258 shifted once to the left is dominated by this sequence.
%Y A336422 is the generalization to non-superprimorials.
%Y A000110 counts divisors of superprimorials with distinct prime exponents.
%Y A006939 lists superprimorials or Chernoff numbers.
%Y A008302 counts divisors of superprimorials by bigomega.
%Y A022915 counts permutations of prime indices of superprimorials.
%Y A076954 can be used instead of A006939.
%Y A130091 lists numbers with distinct prime exponents.
%Y A181796 counts divisors with distinct prime exponents.
%Y A181818 gives products of superprimorials.
%Y A317829 counts factorizations of superprimorials.
%Y Cf. A000005, A008278, A027423, A071625, A118914, A124010, A327498, A336417, A336419, A336420, A336426, A336500, A336568.
%K nonn,more
%O 0,2
%A _Gus Wiseman_, Jul 25 2020