login
A336368
Primes p(n) such that gcd(n, prime(n)+prime(n+1)) = 1.
4
2, 11, 17, 23, 31, 41, 59, 67, 73, 83, 97, 109, 127, 157, 167, 179, 191, 211, 227, 233, 241, 277, 283, 331, 353, 367, 389, 401, 431, 439, 461, 467, 499, 509, 523, 547, 563, 587, 599, 607, 617, 631, 653, 661, 677, 691, 709, 727, 739, 751, 773, 797, 829, 859
OFFSET
1,1
COMMENTS
This sequence and A336369 partition the set of primes.
EXAMPLE
In the following table, p(n) = A000040(n) = prime(n).
n p(n) p(n)+p(n+1) gcd
1 2 5 1
2 3 8 4
3 5 12 3
4 7 18 2
5 11 24 1
6 13 30 6
1 and 5 are in A336366; 2 and 3 are in A336367; 2 and 11 are in A336368; 3 and 5 are in A336369.
MATHEMATICA
p[n_] := Prime[n];
u = Select[Range[200], GCD[#, p[#] + p[# + 1]] == 1 &] (* A336366 *)
v = Select[Range[200], GCD[#, p[#] + p[# + 1]] > 1 &] (* A336367 *)
Prime[u] (* A336368 *)
Prime[v] (* A336369 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 04 2020
STATUS
approved