login
a(n) is the index of the first occurrence of the Euclidean distance prime(n) from a point on a square spiral to its starting point at 1.
1

%I #14 Jul 25 2020 17:09:58

%S 11,28,50,176,452,536,848,1388,2048,1682,3752,4784,6272,7268,8696,

%T 7938,13748,14210,17756,19952,11888,24728,27308,25322,20456,38888,

%U 42128,45476,32792,49826,64136,68252,43698,76868,77930,90752,69216,105788,111056,108354,127628

%N a(n) is the index of the first occurrence of the Euclidean distance prime(n) from a point on a square spiral to its starting point at 1.

%H Hugo Pfoertner, <a href="/A336335/b336335.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A054552(prime(n)) if prime(n) != 1 mod 4.

%e 37--36--35--34--33--32--31

%e | |

%e 38 17--16--15--14--13 30 ...

%e | | | | |

%e 39 18 5---4---3 12 29 54

%e | | | | | | |

%e 40 19 6 1---2 d=2 d=3 53

%e | | | | | |

%e 41 20 7---8---9--10 27 52

%e | | | |

%e 42 21--22--23--24--25--26 51

%e | |

%e 43--44--45--46--47--48--49-d=5

%e .

%e a(1) = 11 is the index of the first occurrence of distance d = 2 = prime(1) from the start of the spiral.

%e a(2) = 28 is the index of the first occurrence of distance d = 3 = prime(2) from the start of the spiral.

%e Distances of the form 4*k+1 corresponding to Pythagorean primes A002144 occur earlier than on the East spoke of the square spiral, dependent on the decomposition of p^2 into two squares. prime(3)^2 = 4^2 + 3^2 leads to index a(3) = 50 in the spiral.

%Y Cf. A002144, A002145, A054552, A174344, A268038, A274923, A336336.

%K nonn

%O 1,1

%A _Hugo Pfoertner_, Jul 24 2020