login
Sum of path lengths over all labeled rooted unordered binary trees.
0

%I #14 Jul 18 2020 03:07:16

%S 0,0,2,24,300,4260,69120,1271340,26233200,601246800,15171105600,

%T 418203324000,12509695598400,403696590897600,13982667790291200,

%U 517482647165484000,20381726051118432000,851302665544050720000,37587618060140244096000,1749369290830388555328000,85599487854917373617280000

%N Sum of path lengths over all labeled rooted unordered binary trees.

%F E.g.f.: ((1 -sqrt(1 -2*z -z^2))*(1 -z -sqrt(1 -2*z -z^2)))/(z*(1 -2*z -z^2)).

%F a(n) = Sum_{k} A336309(n,k)*k, for n>=1.

%F a(n) ~ n!/2 * (sqrt(2) + 1)^(n+1) * (1 - sqrt((10-sqrt(2))/(Pi*n))). - _Vaclav Kotesovec_, Jul 17 2020

%t nn = 20; Range[0, nn]! CoefficientList[ Series[-(((-1 + Sqrt[1 - 2 z - z^2]) (-1 + z + Sqrt[1 - 2 z - z^2]))/(z (-1 + 2 z + z^2))), {z, 0, nn}], z]

%o (PARI) my(z='z+O('z^25)); concat([0,0], Vec(serlaplace(((1 -sqrt(1 -2*z -z^2))*(1 -z -sqrt(1 -2*z -z^2)))/(z*(1 -2*z -z^2))))) \\ _Joerg Arndt_, Jul 18 2020

%Y Cf. A336309, A036774 (row sums).

%K nonn

%O 0,3

%A _Geoffrey Critzer_, Jul 17 2020