OFFSET
0,3
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(Sum_{n>=1} H(n) * x^n / n!).
MATHEMATICA
a[0] = 1; a[n_] := a[n] = n! Sum[Binomial[n - 1, k - 1] HarmonicNumber[k] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 17}]
nmax = 17; CoefficientList[Series[Exp[Sum[HarmonicNumber[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!^2
nmax = 17; Assuming[x > 0, CoefficientList[Series[Exp[Exp[x] (EulerGamma - ExpIntegralEi[-x] + Log[x])], {x, 0, nmax}], x]] Range[0, nmax]!^2
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 16 2020
STATUS
approved