login
A336289
a(0) = 1; a(n) = n! * Sum_{k=1..n} binomial(n-1,k-1) * (k-1)! * H(k) * a(n-k) / (n-k)!, where H(k) is the k-th harmonic number.
1
1, 1, 5, 55, 1054, 31046, 1299386, 73211510, 5338080280, 488727800664, 54865512897432, 7408400404206792, 1184230737883333680, 221121985937352261360, 47683177920267470877648, 11758982455716373002624816, 3287966057434181416523799936
OFFSET
0,3
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(Sum_{n>=1} H(n) * x^n / n).
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(log(1 - x)^2 / 2 + polylog(2,x)).
MATHEMATICA
a[0] = 1; a[n_] := a[n] = n! Sum[Binomial[n - 1, k - 1] (k - 1)! HarmonicNumber[k] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 16}]
nmax = 16; CoefficientList[Series[Exp[Sum[HarmonicNumber[k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!^2
nmax = 16; CoefficientList[Series[Exp[Log[1 - x]^2/2 + PolyLog[2, x]], {x, 0, nmax}], x] Range[0, nmax]!^2
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 16 2020
STATUS
approved