login
a(n) = Sum_{k=1..n} mu(k)*k^5.
7

%I #28 Apr 04 2023 22:09:19

%S 1,-31,-274,-274,-3399,4377,-12430,-12430,-12430,87570,-73481,-73481,

%T -444774,93050,852425,852425,-567432,-567432,-3043531,-3043531,

%U 1040570,6194202,-242141,-242141,-242141,11639235,11639235,11639235,-8871914,-33171914,-61801065

%N a(n) = Sum_{k=1..n} mu(k)*k^5.

%C Conjecture: a(n) changes sign infinitely often.

%H Seiichi Manyama, <a href="/A336279/b336279.txt">Table of n, a(n) for n = 1..10000</a>

%F From _Seiichi Manyama_, Apr 03 2023: (Start)

%F G.f. A(x) satisfies x = Sum_{k>=1} k^5 * (1 - x^k) * A(x^k).

%F Sum_{k=1..n} k^5 * a(floor(n/k)) = 1. (End)

%t Array[Sum[MoebiusMu[k]*k^5, {k, #}] &, 32] (* _Michael De Vlieger_, Jul 15 2020 *)

%o (PARI) a(n) = sum(k=1, n, moebius(k)*k^5); \\ _Michel Marcus_, Jul 15 2020

%o (Python)

%o from functools import lru_cache

%o @lru_cache(maxsize=None)

%o def A336279(n):

%o if n <= 1:

%o return 1

%o c, j = 1, 2

%o k1 = n//j

%o while k1 > 1:

%o j2 = n//k1 + 1

%o c -= (j2**2*(j2**2*(j2*(2*j2 - 6) + 5) - 1)-j**2*(j**2*(j*(2*j - 6) + 5) - 1))//12*A336279(k1)

%o j, k1 = j2, n//j2

%o return c-(n**2*(n**2*(n*(2*n + 6) + 5) - 1)-j**2*(j**2*(j*(2*j - 6) + 5) - 1))//12 # _Chai Wah Wu_, Apr 04 2023

%Y Cf. A002321, A068340, A336276, A336277, A336278.

%Y Cf. A008683, A055615, A070891, A344429, A344430.

%K easy,sign

%O 1,2

%A _Donald S. McDonald_, Jul 15 2020