OFFSET
0,2
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / BesselJ(0,2*sqrt(x))^2.
a(n) ~ (n!)^2 * n / (BesselJ(1, 2*sqrt(r))^2 * r^(n+1)), where r = BesselJZero(0,1)^2 / 4 = A115368^2/4 = 1.4457964907366961302939989396139517587... - Vaclav Kotesovec, Jul 15 2020
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k]^2 Binomial[2 k, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
nmax = 17; CoefficientList[Series[1/BesselJ[0, 2 Sqrt[x]]^2, {x, 0, nmax}], x] Range[0, nmax]!^2
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 15 2020
STATUS
approved