Let $u(n)=(2 * n+1) *\left(4 *_{n}{ }^{\wedge} 2+4 * n+3\right) / 3=A 057813(n)$.

Using Maple's sum command we can verify the identity

$$
\text { A336266 }=3 * \operatorname{Pi} / 16=1 / 2+\operatorname{Sum}_{_}\{k>=0\}(-1)^{\wedge} k /(u(k) * u(k+1))
$$

We show how the alternating series can be converted to the following continued fraction expansion:

3*Pi/16

$$
=1 /\left(11+3 /\left(12+15 /\left(12+\ldots+\left(4 \star_{n} \wedge 2-1\right) /(12+\ldots)\right)\right)\right) .
$$

It turns out that this result is a particular case of a more general result described below.

First, we define two sequences $\{A(n): n>=0\}$ and $\{B(n): n>=0\}$ by

$$
A(n)=B(n) * \operatorname{Sum}_{_}\{k=0 \ldots n\}(-1)^{\wedge} k /(u(k) * u(k+1))
$$

and

$$
B(n)=(2 * n+1)!/\left(2^{\wedge} n * n!\right) \star u(n+1)
$$

It is easy to check that $B(n)$ satisfies the 3-term recurrence

$$
\begin{equation*}
B(n)=12 * B(n-1)+\left(4 *_{n} \wedge 2-1\right) * B(n-2) \ldots \tag{1}
\end{equation*}
$$

for $\mathrm{n}>=2$, with initial conditions $B(0)=11, B(1)=135$. With a little bit more work one can verify that $A(n)$ satisfies the same recurrence

$$
A(n)=12 * A(n-1)+\left(4 * n^{\wedge} 2-1\right) * A(n-2) \quad \ldots \text { (2) }
$$

for $\mathrm{n}>=2$, with initial conditions $\mathbf{A}(0)=1, \mathrm{~A}(1)=12$.

By comparing (1) and (2) with the fundamental 3-term recurrences satisfied by the numerators and denominators of the convergents to a generalised continued fraction, we find that for $n>=1$, $A(n) / B(n)=1 /\left(11+3 /\left(12+15 /\left(12+\ldots+\left(4 * n^{\wedge} 2-1\right) /(12)\right)\right)\right)$.

Letting n -> 00, we obtain

$$
\begin{aligned}
& \left.3 * \operatorname{Pi} / 16=1 / 2+\text { Sum_ }^{\{ } k>=0\right\}(-1) \wedge k /(u(k) * u(k-1)) \\
& =1 /\left(11+3 /\left(12+15 /\left(12+\ldots+\left(4 *_{n} \wedge 2-1\right) /(12+\ldots)\right)\right)\right) .
\end{aligned}
$$

This can be rearranged to give

$$
\begin{aligned}
& (3 * \operatorname{Pi}-8) /(3 * \operatorname{Pi}+8)= \\
& \quad 1 /\left(12+3 /\left(12+15 /\left(12+\ldots+\left(4 * n^{\wedge} 2-1\right) /(12+\ldots)\right)\right)\right) .
\end{aligned}
$$

Generalisation.
Note that $u(n)=\left(2 *_{n}+1\right) *\left(4 *_{n} \wedge 2+4 *_{n}+3\right) / 3$ is the unique polynomial solution of degree 3 to the difference equation

$$
\left(2 *_{n}+1\right) *(u(n+1)-u(n-1))=12 * u(n)
$$

normalised so that $u(0)=1$.
More generally, for r a positive integer, let $u _r(n)$ denote the unique polynomial solution of degree r to the difference equation

$$
(2 * n+1) *\left(u_{_} r(n+1)-u_{-} r(n-1)\right)=4 * r * u_{-} r(n) \quad . . \text { (3) }
$$

normalised so that $u _r(0)=1$.
The first few values are $u_{-} 1(n)=2 * n+1, u_{2} 2(n)=(2 * n+1)^{\wedge} 2$ and $u_{-} 3(n)=(2 * n+1) *\left(4 *_{n} \wedge 2+4 * n+3\right) / 3$ (called $u(n)$ above). The polynomials u_r may be obtained from the coefficients of t^r in the power series expansion of

$$
\begin{aligned}
& ((1+t) /(1-t))^{\wedge}(x+1 / 2)=1+(2 * x+1) * t+ \\
& (2 * x+1) \wedge 2 * t^{\wedge} 2 / 2!+\left(8 * x^{\wedge} 3+12 * x^{\wedge} 2+10 * x+3\right) * t \wedge 3 / 3!+ \\
& \left(16 * x^{\wedge} 4+32 * x^{\wedge} 3+56 * x^{\wedge} 2+40 * x+9\right) * t \wedge 4 / 4!+ \\
& \left(32 * x^{\wedge} 5+80 * x^{\wedge} 4+240 * x^{\wedge} 3+280 * x^{\wedge} 2+178 * x+45\right) * t \wedge 5 / 5!
\end{aligned}
$$

$$
+\ldots
$$

Thus $u_{\text {_ }} r(x)$ is the Meixner polynomial of the first kind M_r(x + 1/2; 0, -1) and is given by the explicit formula

$$
u_{_} r(x)=
$$

$(-1)^{\wedge} r * r!* S u m _\{k=0 . . r\}$ binomial (x+1/2,k)*binomial (-x-1/2,n-k).
Define two sequences by

$$
\begin{aligned}
& B_{-} r(n)=(2 * n+1)!/(2 \wedge n * n!) * u_{-} r(n+1) \\
& A_{-} r(n)=B_{-} r(n) * \operatorname{Sum}_{-}\{k>=0\}(-1)^{\wedge} k /\left(u_{-} r(k) * u_{-} r(k+1)\right) .
\end{aligned}
$$

It easily follows from (3) that B_r(n) satisfies the 3-term recurrence

$$
\text { B_r } r(n)=4 * r * B _r(n-1)+\left(4 * n^{\wedge} 2-1\right) * B _r(n-2)
$$

for $n>=2$.
Using this, one can show that A_r(n) satisfies the same recurrence

$$
A_{-} r(n)=4 * r * A_{-} r(n-1)+\left(4 *_{n \wedge} 2-1\right) A_{A} r(n-2)
$$

for $n>=2$.
As in the above case $r=3$, we can convert the series
 to a generalised continued fraction
$1 /\left(4 * r+-1+3 /\left(4 * r+15 /\left(4 * r+\ldots+\left(4 *_{n} \wedge 2-1\right) /(4 * r+\ldots)\right)\right)\right.$
(where the +-1 choice depends on the parity of r).
The continued faction can be evaluated in terms of the constant Pi using results in Lorentzen and Waadeland, p. 586, equation 4.7.9 (for r even) and equation 4.7.10 (for r odd). We give some examples below.

Examples.
(i) $r=1: u_{1} 1(n)=(2 * n+1)$.

$$
\begin{aligned}
\text { Sum_ } & \{k>=0\}(-1)^{\wedge} k /\left(u_{-} 1(k) * u_{-} 1(k+1)\right) \\
& =1 /\left(3+3 /\left(4+15 /\left(4+\ldots+\left(4 *_{n} \wedge 2-1\right) /(4+\ldots)\right)\right)\right) \\
& =P i / 4-1 / 2,
\end{aligned}
$$

which rearranges to

```
    (Pi - 2)/(Pi + 2) =
    1/(4 + 3/(4 + 15/(4 + ... + (4*n^2 - 1)/(4 + ... )))).
(ii) r = 2: u_2(n) = (2*n + 1)^2.
Sum_{k>= 0} (-1)^k/(u_2(k)*u_2(k+1))
    = 1/(9 + 3/(8 + 15/(8 + ... + (4*n^2 - 1)/(8 + ... ))))
    = 1/2 - Pi/8,
```

which rearranges to
$(4-P i) /(4+P i)=$
$1 /\left(8+3 /\left(8+15 /\left(8+\ldots+\left(4 \star_{n} \wedge 2-1\right) /(8+\ldots)\right)\right)\right.$.
(iii) $r=3: u_{-} 3(n)=(2 * n+1) *\left(4{ }^{n} n^{\wedge} 2+4 * n+3\right) / 3$.
Sum_\{k>=0\}(-1)^k/(u_3(k)*u_3(k+1))
$=1 /\left(11+3 /\left(12+15 /\left(12+\ldots+\left(4 * n^{\wedge} 2-1\right) /(12+\ldots)\right)\right)\right.$
$=3 * P i / 16-1 / 2$,
which rearranges to

```
(3*Pi - 8)/(3*Pi + 8) =
    1/(12 + 3/(12 + 15/(12 + .. + (4*n^2 - 1)/(12 + ... ))))
(iv) r = 4: u_4(n) = (16*n^4 + 32*n^^3 + 56*n^2 + 40*n + 9)/9.
    Sum_{k>= 0} (-1)^k/(u_3(k)*u_3(k+1))
    = 1/(17 + 3/(16 + 15/(16 + ... + (4*n^2 - 1)/(16 + ... ))))
    = 1/2 - 9*Pi/64,
```

which rearranges to $(32-9 * P i) /(32+9 * P i)=$

$$
1 /\left(16+3 /\left(16+15 /\left(16+\ldots+\left(4 \star_{n} \wedge 2-1\right) /(16+\ldots)\right)\right)\right) .
$$

(v) $r=5$:
$u_{-} 5(n)=\left(32 \star_{n} \wedge 5+80 *_{n \wedge} 4+240 *_{n^{\wedge}} 3+280 \star_{n^{\wedge}} 2+178 *_{n}+45\right) / 45$.
Sum_\{k>=0\}(-1)^k/(u_5(k)*u_5(k+1))

```
= 1/(19 + 3/(20 + 15/(20 + ... + (4*n^2 - 1)/(20 + ... ))))
= 45*Pi/256 - 1/2,
```

which rearranges to

```
(45*Pi - 128)/(45*Pi + 128) =
    1/(20 + 3/(20 + 15/(20 + ... + (4*n^2 - 1)/(20 + ... )))).
```

