OFFSET
1,2
COMMENTS
The exponential abundancy of a number k is esigma(k)/k, where esigma is the sum of exponential divisors of k (A051377).
Exponential deficient numbers are numbers k with esigma(k)/k < 2. These are numbers that are neither e-perfect (A054979) nor exponential abundant (A129575).
The corresponding values of the exponential abundancy are 1, 1.5, 1.666..., 1.8..., 1.833..., ...
EXAMPLE
4 is a term since it is exponential deficient, and esigma(4)/4 = 3/2 is higher than esigma(k)/k for all the exponential deficient numbers k < 4.
MATHEMATICA
fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; rm = 0; s={}; Do[r = esigma[n]/n; If[r >= 2, Continue[]]; If[r > rm, rm = r; AppendTo[s, n]], {n, 1, 10^6}]; s
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Jul 14 2020
STATUS
approved