OFFSET
1,2
COMMENTS
First differs from A333634 at n = 47.
The squarefree numbers (A005117) are terms of this sequence since if k is squarefree, then the largest square dividing k is 1 which is a unitary divisor, sqrt(1) = 1 has 0 prime divisors, and 0 is even.
The asymptotic density of this sequence is (Product_{p prime} (1 - 1/(p^2*(p+1))) + Product_{p prime} (1 - (2*p+1)/(p^2*(p+1))))/2 = (0.881513... + 0.394391...)/2 = 0.637952807730728551636349961980617856650450613867264... (Cohen, 1964; the first product is A065465).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Eckford Cohen, Some asymptotic formulas in the theory of numbers, Trans. Amer. Math. Soc., Vol. 112 (1964), pp. 214-227.
EXAMPLE
36 is a term since the largest square dividing 36 is 36, which is a unitary divisor, sqrt(36) = 6, 6 = 2 * 3 has 2 distinct prime divisors, and 2 is even.
MATHEMATICA
seqQ[n_] := EvenQ @ Length[(e = Select[FactorInteger[n][[;; , 2]], # > 1 &])] && AllTrue[e, EvenQ[#] &]; Select[Range[100], seqQ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jul 12 2020
STATUS
approved