

A336198


Decimal expansion of the radius of a sphere centered on the surface of a unitradius sphere and dividing it into two parts of equal volume.


0



1, 2, 2, 8, 5, 4, 4, 8, 6, 3, 7, 3, 5, 2, 2, 0, 9, 0, 3, 4, 4, 8, 9, 9, 4, 4, 9, 7, 6, 8, 5, 2, 9, 3, 4, 6, 5, 6, 4, 4, 1, 9, 1, 6, 4, 5, 5, 1, 8, 6, 0, 2, 6, 4, 1, 5, 9, 0, 8, 1, 9, 5, 2, 4, 5, 1, 0, 9, 7, 2, 7, 2, 3, 4, 4, 6, 8, 8, 4, 6, 7, 2, 9, 6, 0, 0, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The solution to the grazing goat problem in three dimensions.


LINKS

Table of n, a(n) for n=1..87.
Marshall Fraser, The Grazing Goat in n Dimensions, The TwoYear College Mathematics Journal, Vol. 15, No. 2 (1984), pp. 126134.
Mark D. Meyerson, Return of the Grazing Goat in n Dimensions, The College Mathematics Journal, Vol. 15, No. 5 (1984), pp. 430432.
Eric Weisstein's World of Mathematics, Goat Problem.
Wikipedia, Goat problem.


FORMULA

The smaller of the 2 real roots of the equation 3*x^4  8*x^3 + 8 = 0.


EXAMPLE

1.228544863735220903448994497685293465644191645518602...


MATHEMATICA

RealDigits[x /. Solve[3*x^4  8*x^3 + 8 == 0 && x > 0, {x}, Reals][[1]], 10, 100][[1]]


CROSSREFS

Cf. A019699, A133731.
Sequence in context: A075101 A075103 A021818 * A241328 A223041 A024558
Adjacent sequences: A336195 A336196 A336197 * A336199 A336200 A336201


KEYWORD

nonn,cons


AUTHOR

Amiram Eldar, Jul 11 2020


STATUS

approved



