login
A336177
Numbers k such that there are exactly two powerful numbers between k^2 and (k+1)^2.
5
5, 11, 14, 22, 25, 33, 44, 46, 55, 58, 62, 70, 72, 73, 82, 88, 96, 98, 103, 104, 109, 110, 111, 124, 129, 135, 155, 156, 158, 164, 172, 176, 178, 181, 187, 197, 203, 206, 207, 209, 212, 218, 240, 243, 248, 249, 254, 257, 259, 268, 277, 279, 281, 285, 288, 291
OFFSET
1,1
COMMENTS
Positions of 2's in A119241.
Shiu (1980) proved that this sequence has an asymptotic density 0.2312... A more accurate calculation using his formula gives 0.231299167354828...
REFERENCES
József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter VI, p. 226.
LINKS
P. Shiu, On the number of square-full integers between successive squares, Mathematika, Vol. 27, No. 2 (1980), pp. 171-178.
EXAMPLE
5 is a term since there are exactly two powerful numbers, 27 = 3^3 and 32 = 2^5 between 5^2 = 25 and (5+1)^2 = 36.
MATHEMATICA
powQ[n_] := (n == 1) || Min @@ FactorInteger[n][[;; , 2]] > 1; Select[Range[300], Count[Range[#^2 + 1, (# + 1)^2 - 1], _?powQ] == 2 &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jul 10 2020
STATUS
approved