login
A336163
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * binomial(n,j)^3.
2
1, 1, 1, 1, 2, 1, 1, 3, 10, 1, 1, 4, 21, 56, 1, 1, 5, 34, 171, 346, 1, 1, 6, 49, 352, 1521, 2252, 1, 1, 7, 66, 605, 3946, 14283, 15184, 1, 1, 8, 85, 936, 8065, 46744, 138909, 104960, 1, 1, 9, 106, 1351, 14346, 113525, 573616, 1385163, 739162, 1, 1, 10, 129, 1856, 23281, 231876, 1656145, 7217536, 14072193, 5280932, 1
OFFSET
0,5
COMMENTS
Column k is the diagonal of the rational function 1 / (1 + y + z + x*y + y*z + k*z*x + (k+1)*x*y*z).
Column k is the diagonal of the rational function 1 / ((1-x)*(1-y)*(1-z) - k*x*y*z).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 10, 21, 34, 49, 66, ...
1, 56, 171, 352, 605, 936, ...
1, 346, 1521, 3946, 8065, 14346, ...
1, 2252, 14283, 46744, 113525, 231876, ...
MATHEMATICA
Unprotect[Power]; 0^0 = 1; T[n_, k_] := Sum[k^j * Binomial[n, j]^3, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 11 2020 *)
CROSSREFS
Columns k=0-6 give: A000012, A000172, A206178, A206180, A216483, A216636, A216698.
Main diagonal gives A241247.
Sequence in context: A077385 A337219 A220898 * A066013 A212261 A014521
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jul 10 2020
STATUS
approved