OFFSET
1,18
COMMENTS
Although all numbers appear to be present, 1 appears most often followed by 0.
Since the first column and main diagonal are equal to 0, all matrices whose upper left corner is on the main diagonal have as their determinant 0.
REFERENCES
Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.
LINKS
Robert G. Wilson v, Mathematica coding for "SuperPowerMod" from Vardi
EXAMPLE
\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
n\
_1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_2 0 0 1 0 1 4 2 0 7 6 9 4 3 2 1 0
_3 0 1 0 3 2 3 6 3 0 7 9 3 1 13 12 11
_4 0 0 1 0 1 4 4 0 4 6 4 4 9 4 1 0
_5 0 1 2 1 0 5 3 5 2 5 1 5 5 3 5 5
_6 0 0 0 0 1 0 1 0 0 6 5 0 1 8 6 0
_7 0 1 1 3 3 1 0 7 7 3 2 7 6 7 13 7
_8 0 0 1 0 1 4 1 0 1 6 3 4 1 8 1 0
_9 0 1 0 1 4 3 1 1 0 9 5 9 1 1 9 9
10 0 0 1 0 0 4 4 0 1 0 1 4 3 4 10 0
etc, .
MATHEMATICA
(* first load all lines of Super Power Mod by Ilan Vardi from the hyper-link *)
Table[ SuperPowerMod[n - m + 1, 2^100, m], {n, 14}, {m, n, 1, -1}] // Flatten (* or *)
a[b_, 1] = 0; a[b_, n_] := PowerMod[b, If[OddQ@ b, a[b, EulerPhi[n]], EulerPhi[n] + a[b, EulerPhi[n]]], n]; Table[a[b - m + 1, m], {b, 14}, {m, b, 1, -1}] // Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Jinyuan Wang and Robert G. Wilson v, Apr 15 2020
STATUS
approved