login
A336103
Number of separable multisets of size n covering an initial interval of positive integers.
13
1, 1, 1, 3, 5, 13, 24, 56, 108, 236, 464, 976, 1936, 3984, 7936, 16128, 32192, 64960, 129792, 260864, 521472, 1045760, 2091008, 4188160, 8375296, 16763904, 33525760, 67080192, 134156288, 268374016, 536739840, 1073610752, 2147205120, 4294688768, 8589344768, 17179279360, 34358493184
OFFSET
0,4
COMMENTS
A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of its remaining multiplicities plus one. Hence a(n) is the number of compositions of n whose greatest part is at most one more than the sum of its other parts. For example, the a(1) = 1 through a(5) = 13 compositions are:
(1) (11) (12) (22) (23)
(21) (112) (32)
(111) (121) (113)
(211) (122)
(1111) (131)
(212)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)
FORMULA
a(n) = 2^(n-1) - (floor(n/2)+1) * 2^(floor(n/2)-2) for n >= 2. - David A. Corneth, Jul 09 2020
From Chai Wah Wu, Apr 07 2021: (Start)
a(n) = 2*a(n-1) + 4*a(n-2) - 8*a(n-3) - 4*a(n-4) + 8*a(n-5) for n > 6.
G.f.: (x - 1)*(2*x^5 + 7*x^4 - 5*x^2 + 1)/((2*x - 1)*(2*x^2 - 1)^2). (End)
EXAMPLE
The a(1) = 1 through a(5) = 13 separable multisets:
{1} {1,2} {1,1,2} {1,1,2,2} {1,1,1,2,2}
{1,2,2} {1,1,2,3} {1,1,1,2,3}
{1,2,3} {1,2,2,3} {1,1,2,2,2}
{1,2,3,3} {1,1,2,2,3}
{1,2,3,4} {1,1,2,3,3}
{1,1,2,3,4}
{1,2,2,2,3}
{1,2,2,3,3}
{1,2,2,3,4}
{1,2,3,3,3}
{1,2,3,3,4}
{1,2,3,4,4}
{1,2,3,4,5}
MATHEMATICA
allnorm[n_]:=If[n<=0, {{}}, Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1]];
sepQ[m_]:=Select[Permutations[m], !MatchQ[#, {___, x_, x_, ___}]&]!={};
Table[Length[Select[allnorm[n], sepQ]], {n, 0, 5}]
(* or *)
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n], With[{mx=Max@@#}, mx<=1+Total[DeleteCases[#, mx, {1}, 1]]]&]], {n, 0, 15}] (* or *)
CoefficientList[Series[(x - 1) (2 x^5 + 7 x^4 - 5 x^2 + 1)/((2 x - 1) (2 x^2 - 1)^2), {x, 0, 36}], x] (* Michael De Vlieger, Apr 07 2021 *)
CROSSREFS
The inseparable version is A336102.
The strong (weakly decreasing multiplicities) case is A336106.
Sequences covering an initial interval are A000670.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Separable partitions are A325534.
Inseparable partitions are A325535.
Inseparable factorizations are A333487.
Anti-run compositions are ranked by A333489.
Heinz numbers of inseparable partitions are A335448.
Sequence in context: A339888 A026733 A005824 * A027305 A026766 A026709
KEYWORD
nonn,easy
AUTHOR
Gus Wiseman, Jul 09 2020
EXTENSIONS
a(26)-a(36) from David A. Corneth, Jul 09 2020
STATUS
approved