%I #15 Aug 31 2020 18:45:39
%S 2,3,4,5,6,7,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,
%T 30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,
%U 55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74
%N Numbers divisible by the minimal exponent in their prime factorization (A051904).
%C The asymptotic density of this sequence is 1 (Schinzel and Šalát, 1994).
%D József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 331.
%H Amiram Eldar, <a href="/A336063/b336063.txt">Table of n, a(n) for n = 1..10000</a>
%H Andrzej Schinzel and Tibor Šalát, <a href="https://dml.cz/handle/10338.dmlcz/136624">Remarks on maximum and minimum exponents in factoring</a>, Mathematica Slovaca, Vol. 44, No. 5 (1994), pp. 505-514.
%e 4 = 2^2 is a term since A051904(4) = 2 is a divisor of 4.
%t h[1] = 0; h[n_] := Min[FactorInteger[n][[;; , 2]]]; Select[Range[2, 100], Divisible[#, h[#]] &]
%t Select[Range[2,100],Divisible[#,Min[FactorInteger[#][[All,2]]]]&] (* _Harvey P. Dale_, Aug 31 2020 *)
%o (PARI) isok(m) = if (m>1, (m % vecmin(factor(m)[,2])) == 0); \\ _Michel Marcus_, Jul 08 2020
%Y Cf. A051904, A124184.
%Y A005117 (except for 1) is subsequence.
%Y Similar sequences: A033950, A005349, A006446, A074946, A075592, A007694, A112249, A336064.
%K nonn
%O 1,1
%A _Amiram Eldar_, Jul 07 2020