OFFSET
0,5
COMMENTS
Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727097...; see A333360.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992852...; see A335815.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886995...; see A335814.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.
LINKS
André Voros, Zeta functions for the Riemann zeros, arXiv:math/0104051 [math.CV], 2002-2003, p.22 Table 1.
FORMULA
EXAMPLE
0.0000371006364374648715125054339132797135962919799565287...
MATHEMATICA
Join[{0, 0, 0, 0}, RealDigits[N[3 + EulerGamma + EulerGamma^2 - Pi^2/8 - Log[4 Pi] + 2 StieltjesGamma[1], 105]][[1]]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jun 29 2020
STATUS
approved