login
A335889
a(n) is the number of Mersenne primes between consecutive perfect numbers.
0
1, 2, 0, 3, 1, 0, 0, 3, 1, 0, 0, 2, 0, 3, 2, 1, 0, 0, 0, 3, 0, 2, 1, 0, 1, 1, 2, 1, 0, 0, 4, 0, 0, 0, 2, 0, 2, 3, 3
OFFSET
1,2
LINKS
Chris K. Caldwell and G. L. Honaker, Jr., Prime Curio for 756839
EXAMPLE
a(1) = 1 because there is exactly 1 Mersenne prime (7) between the first and second perfect numbers (6 and 28).
a(4) = 3 because there are exactly 3 Mersenne primes (8191, 131071, 524287) between the fourth and fifth perfect numbers (8128 and 33550336).
MATHEMATICA
p = MersennePrimeExponent @ Range[47]; mer[p_] := 2^p - 1; perf[p_] := mer[p] * 2^(p - 1); mers = mer /@ p; perfs = Select[perf /@ p, # < mers[[-1]] &]; BinCounts[mers, {perfs}] (* Amiram Eldar, Jun 29 2020 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
G. L. Honaker, Jr., Jun 28 2020
EXTENSIONS
a(5)-a(13) from Metin Sariyar, Jun 28 2020
a(14)-a(16) and a(20)-a(39) from Metin Sariyar, Jun 29 2020
a(17)-a(19) from Amiram Eldar, Jun 29 2020
STATUS
approved