login
A335804
Number of n X n matrices over GF(2) with minimal polynomial x^n - 1.
0
1, 3, 56, 2520, 666624, 839946240, 3343877406720, 41781748196966400, 3701652434038082764800, 763416952708225267547504640, 750836199529096452135514747699200
OFFSET
1,2
COMMENTS
a(n) is the size of the conjugacy class in GL(n,GF(2)) corresponding to the companion matrix of x^n - 1. It can be given by the number of n X n invertible matrices over GF(2) divided by the number of n X n circulant invertible matrices over GF(2) (i.e., the centralizer of the companion matrix of x^n - 1).
FORMULA
a(n) = A002884(n) / A003473(n). If n is an odd prime, then a(n) = A089035(n).
CROSSREFS
KEYWORD
nonn
AUTHOR
Christof Beierle, Jun 24 2020
STATUS
approved