login
Number of hare pop-stack sortable Cayley permutations.
0

%I #14 Jul 08 2020 20:40:52

%S 1,1,3,11,41,151,553,2023,7401

%N Number of hare pop-stack sortable Cayley permutations.

%C Also, the set of Cayley permutations avoiding 231, 312, and 2121.

%H Giulio Cerbai, <a href="https://arxiv.org/abs/2003.02536">Sorting Cayley permutations with pattern-avoiding machines</a>, arXiv:2003.02536 [math.CO], 2020. See p. 16.

%F Conjectures from _Colin Barker_, Jun 24 2020: (Start)

%F G.f.: (1 - 4*x + 4*x^2 - 2*x^3) / (1 - 5*x + 6*x^2 - 4*x^3).

%F a(n) = 5*a(n-1) - 6*a(n-2) + 4*a(n-3) for n>3.

%F (End)

%Y Cf. A000670, A226316.

%K nonn,more

%O 0,3

%A _Michael De Vlieger_, Jun 23 2020

%E a(7)-a(8) from Giulio Cerbai via _Michael De Vlieger_, Jun 24 2020