login
A335760
Irregular table read by rows: n-sect the angles of a heptagon. Then T(n,k) = number of k-sided polygons in that figure for k >= 3.
4
0, 0, 0, 0, 1, 14, 21, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 84, 28, 35, 7, 7, 0, 1, 182, 56, 14, 189, 196, 70, 21, 0, 7, 0, 0, 0, 0, 0, 1, 280, 210, 42, 378, 252, 140, 63, 7, 7, 0, 0, 0, 0, 0, 1, 238, 196, 14, 448, 588, 126, 63, 21, 14, 0, 0, 0, 0, 0, 1
OFFSET
1,6
COMMENTS
For n<=200 no polygon has more than 14 edges.
See A335757 for illustrations.
LINKS
Lars Blomberg, Table of n, a(n) for n = 1..1777 (the first 200 rows)
EXAMPLE
The table begins
0, 0, 0, 0, 1;
14;
21, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
84, 28;
35, 7, 7, 0, 1;
182, 56, 14;
189, 196, 70, 21, 0, 7, 0, 0, 0, 0, 0, 1;
280, 210, 42;
378, 252, 140, 63, 7, 7, 0, 0, 0, 0, 0, 1;
238, 196, 14;
448, 588, 126, 63, 21, 14, 0, 0, 0, 0, 0, 1;
CROSSREFS
Cf. A329714 (n-sected sides, not angles), A335757 (regions), A335758 (vertices), A335759 (edges).
Sequence in context: A094393 A128705 A073250 * A159453 A266651 A351689
KEYWORD
nonn,tabf
AUTHOR
Lars Blomberg, Jun 22 2020
STATUS
approved