login
Number of Pell numbers (A000129) <= n.
2

%I #28 Jun 25 2022 00:53:46

%S 1,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,

%T 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,

%U 6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7

%N Number of Pell numbers (A000129) <= n.

%C The sequence is constant on the interval A000129(k) < n <= A000129(k+1).

%H Michael De Vlieger, <a href="/A335741/b335741.txt">Table of n, a(n) for n = 0..10000</a>

%H Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, <a href="https://doi.org/10.2478/auom-2021-0002">On some new results for the generalised Lucas sequences</a>, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36.

%F a(n) = 1+floor(log_alpha(2*sqrt(2)*n+1)), n>=0, where alpha=1+sqrt(2).

%e The Pell numbers A000129 are 0,1,2,5,12,29,70,...

%e We have a(2)=a(3)=a(4)=3, since there are three Pell numbers less than or equal to 2,3 and 4, respectively.

%t Block[{a = 2, b = -1, nn = 105, u, v = {}}, u = {0, 1}; Do[AppendTo[u, Total[{-b, a} u[[-2 ;; -1]]]]; AppendTo[v, Count[u, _?(# <= i &)]], {i, nn}]; {Boole[First[u] <= 0]}~Join~v] (* _Michael De Vlieger_, Jun 11 2021 *)

%t Module[{pn=LinearRecurrence[{2,1},{0,1},9],nn=100},Accumulate[Table[If[ MemberQ[ pn,n],1,0],{n,0,nn}]]] (* _Harvey P. Dale_, Apr 10 2022 *)

%Y Cf. A000129 (Pell Numbers), A108852 (Fibonacci), A130245 (Lucas), A130253 (Jacobsthal).

%Y Partial sums of A105349.

%K nonn

%O 0,2

%A _Ovidiu Bagdasar_, Jun 20 2020