login
A335665
Product of the refactorable divisors of n.
7
1, 2, 1, 2, 1, 2, 1, 16, 9, 2, 1, 24, 1, 2, 1, 16, 1, 324, 1, 2, 1, 2, 1, 4608, 1, 2, 9, 2, 1, 2, 1, 16, 1, 2, 1, 139968, 1, 2, 1, 640, 1, 2, 1, 2, 9, 2, 1, 4608, 1, 2, 1, 2, 1, 324, 1, 896, 1, 2, 1, 1440, 1, 2, 9, 16, 1, 2, 1, 2, 1, 2, 1, 1934917632, 1, 2, 1, 2, 1, 2, 1, 51200
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Refactorable Number
FORMULA
a(n) = Product_{d|n} d^c(d), where c(n) is the refactorable characteristic of n (A336040).
a(n) = Product_{d|n} d^(1 - ceiling(d/tau(d)) + floor(d/tau(d))), where tau(n) is the number of divisors of n (A000005).
a(p) = 1 for odd primes p. - Wesley Ivan Hurt, Nov 28 2021
EXAMPLE
a(6) = 2; The divisors of 6 are {1,2,3,6}. 1 and 2 are refactorable since d(1) = 1|1 and d(2) = 2|2, so a(6) = 1 * 2 = 2.
a(7) = 1; The divisors of 7 are {1,7} and 1 is the only refactorable divisor of 7. So a(7) = 1.
a(8) = 16; The divisors of 8 are {1,2,4,8}. 1, 2 and 8 are refactorable since d(1) = 1|1, d(2) = 2|2 and d(8) = 4|8, so a(8) = 1 * 2 * 8 = 16.
a(9) = 9; The divisors of 9 are {1,3,9}. 1 and 9 are refactorable since d(1) = 1|1 and d(9) = 3|9, so a(9) = 1 * 9 = 9.
MATHEMATICA
a[n_] := Product[If[Divisible[d, DivisorSigma[0, d]], d, 1], {d, Divisors[n]}]; Array[a, 60] (* Amiram Eldar, Nov 24 2021 *)
PROG
(PARI) isr(n) = n%numdiv(n)==0; \\ A033950
a(n) = my(d=divisors(n)); prod(k=1, #d, if (isr(d[k]), d[k], 1)); \\ Michel Marcus, Jul 18 2020
CROSSREFS
Cf. A000005 (tau), A033950 (refactorable numbers), A336040 (refactorable characteristic), A336041 (number of refactorable divisors), A335182 (their sum).
Cf. also A349322 (similar formula, but with sum instead of product).
Sequence in context: A318512 A295310 A359509 * A369239 A002107 A208845
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Jul 17 2020
STATUS
approved