login
A335655
Numbers k such that Omega(k+1) = Omega(k) + m, where Omega(k) = A001222(k) is the number of prime factors of k with multiplicity, case m = 3.
1
23, 53, 59, 63, 83, 89, 103, 111, 119, 131, 139, 149, 151, 161, 197, 227, 233, 293, 299, 303, 307, 347, 349, 377, 379, 389, 391, 395, 399, 407, 443, 461, 487, 491, 509, 519, 521, 539, 551, 557, 563, 566, 569, 571, 591
OFFSET
1,1
EXAMPLE
23 is in the sequence since Omega(24) = 4 = 1 + 3 = Omega(23) + 3.
MATHEMATICA
m = 3; s = {}; Do[If[PrimeOmega[x + 1] == PrimeOmega[x] + m, AppendTo[s, x]], {x, 600}]; s
CROSSREFS
Cf. A001222, A076156 (case m=1), A335652 (case m=2).
Sequence in context: A067625 A140689 A172034 * A113912 A327920 A055782
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 16 2020
STATUS
approved