login
A335634
Number of ordered ways of writing the n-th n-gonal number as a sum of n nonzero n-gonal numbers.
2
1, 1, 1, 0, 1, 30, 180, 700, 3780, 11844, 50610, 325820, 5803380, 126594910, 2114901789, 28282722650, 323420067880, 3190581939996, 29336527986960, 245438739897312, 1967485926594030, 16000631392009320, 184418174847183508, 4054670001158799616, 111835386569787369559
OFFSET
0,6
FORMULA
a(n) = [x^p(n,n)] (Sum_{k=1..n} x^p(n,k))^n, where p(n,k) = k * (k * (n - 2) - n + 4) / 2 is the k-th n-gonal number.
EXAMPLE
a(4) = 1 because the fourth square is 16 and we have [4, 4, 4, 4].
MATHEMATICA
Join[{1}, Table[SeriesCoefficient[Sum[x^(k (k (n - 2) - n + 4)/2), {k, 1, n}]^n, {x, 0, n (n^2 - 3 n + 4)/2}], {n, 1, 24}]]
PROG
(PARI)
p(n, k) = {k * (k * (n - 2) - n + 4) / 2}
a(n) = {my(m=p(n, n)); polcoef((sum(k=1, n, x^p(n, k)) + O(x*x^m))^n, m)} \\ Andrew Howroyd, Oct 03 2020
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 03 2020
STATUS
approved