The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A335619 Number of fundamentally different graceful labelings of the complete bipartite graph K_{n,n}. 1
 1, 1, 4, 1, 7, 2, 10, 3, 8, 1, 42, 2, 7, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 LINKS Eric Weisstein's World of Mathematics, Complete Bipartite Graph Eric Weisstein's World of Mathematics, Graceful Labeling FORMULA a(n) = A337793(n)/(4*(n!)^2). EXAMPLE a(3) = 4 because there are 4 fundamentally different graceful labelings: solution #1:    0  1  4  5    6  8 14 16 solution #2:    0  1  8  9   10 12 14 16 solution #3:    0  1  2 15    5  9 13 16 solution #4    0  1  2  3:    4  8 12 16 All others can be obtained by permutations of left and right vertices, swapping halves ("0" vertex left or right) and the replacement of all vertex labels k by N^2-k. - noted by Bert Dobbelaere, Oct 01 2020 CROSSREFS Cf. A337793 (total number of graceful labelings). Sequence in context: A050356 A245838 A158860 * A037022 A037023 A143971 Adjacent sequences:  A335616 A335617 A335618 * A335620 A335621 A335622 KEYWORD nonn,more AUTHOR Eric W. Weisstein, Oct 02 2020 EXTENSIONS a(10)-a(15) from the diagonal of A337278 by Don Knuth, Dec 08 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 19:16 EDT 2021. Contains 343156 sequences. (Running on oeis4.)