login
A335588
Number of n-step n-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
2
1, 1, 3, 13, 81, 686, 7525, 102173, 1655241, 31119382, 665254791, 15927737772, 422179410829, 12275253219828, 388591800808471, 13309116622983421, 490515662121994785, 19362705183912628838, 815258217524407553989, 36479395828632610279316, 1729012534789121191076601
OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..65 (terms 0..55 from Alois P. Heinz)
FORMULA
a(n) = A335570(n,n).
a(n) == 1 (mod n) for n >= 2.
EXAMPLE
a(2) = 3: [(0,0),(1,1),(2,2)], [(0,0),(1,1),(0,1)], [(0,0),(1,1),(1,0)].
MAPLE
b:= proc(n, l) option remember; `if`(n=0, 1, b(n-1, map(x-> x+1, l))+add(
`if`(l[i]>0, b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..nops(l)))
end:
a:= n-> b(n, [0$n]):
seq(a(n), n=0..23);
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0, 1, b[n - 1, l + 1] + Sum[If[l[[i]] > 0, b[n - 1, Sort[ReplacePart[l, i -> l[[i]] - 1]]], 0], {i, 1, Length[l]}]];
a[n_] := b[n, Table[0, {n}]];
a /@ Range[0, 23] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A335570.
Sequence in context: A160882 A135921 A005923 * A089461 A000684 A222272
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Jan 26 2021
STATUS
approved