login
A335580
Numbers k such that A335579(k) is divisible by at least one of the composites between prime(k) and prime(k+1).
0
3, 6, 14, 38, 61, 164, 248, 402, 677, 1808, 11518, 21018, 54436, 76926, 109950, 461745, 601650, 792962, 1183573, 8198625
OFFSET
1,1
EXAMPLE
a(3) = 14 is in the sequence because A335579(14) = 230 is divisible by 46, which is between prime(14) = 43 and prime(15) = 47.
MAPLE
filter:= proc(n) local i, S, s;
S:= `union`(seq(numtheory:-divisors(i), i=ithprime(n)+1..ithprime(n+1)-1));
s:= convert(S, `+`);
for i from ithprime(n)+1 to ithprime(n+1)-1 do
if s mod i = 0 then return true fi
od;
false
end proc:
select(filter, [$1..10^5]);
PROG
(PARI) f(n) = my(s=[]); for (c=prime(n)+1, prime(n+1)-1, s = setunion(s, divisors(c))); vecsum(s); \\ A335579
isok(k) = my(s=f(k)); for (c=prime(k)+1, prime(k+1)-1, if (!(s % c), return (1))); \\ Michel Marcus, Feb 01 2021
CROSSREFS
Cf. A335579.
Sequence in context: A106395 A369544 A261436 * A079003 A099966 A101162
KEYWORD
nonn,more
AUTHOR
J. M. Bergot and Robert Israel, Jan 26 2021
STATUS
approved