login
A335560
Number of ways to tile an n X n square with 1 X 1 squares and (n-1) X 1 vertical or horizontal strips.
2
1, 16, 131, 335, 851, 2207, 5891, 16175, 45491, 130367, 378851, 1112015, 3286931, 9762527, 29091011, 86879855, 259853171, 777986687, 2330814371, 6986151695, 20945872211, 62812450847, 188387020931, 565060399535, 1694979872051, 5084536963007, 15252805582691
OFFSET
1,2
COMMENTS
It is assumed that 1 X 1 squares and 1 X 1 strips can be distinguished. - Alois P. Heinz, Feb 23 2022
FORMULA
a(n) = 2*3^n + 12*2^n - 19, for n >= 3.
From Colin Barker, Jun 14 2020: (Start)
G.f.: x*(1 + 10*x + 46*x^2 - 281*x^3 + 186*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>5.
(End)
EXAMPLE
Here is one of the 131 ways to tile a 3 X 3 square, in this case using two horizontal and two vertical strips:
_ _ _
|_ _| |
| |_|_|
|_|_ _|
MATHEMATICA
Join[{1, 16}, LinearRecurrence[{6, -11, 6}, {131, 335, 851}, 25]] (* Amiram Eldar, Jun 16 2020 *)
PROG
(PARI) Vec(x*(1 + 10*x + 46*x^2 - 281*x^3 + 186*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Jun 14 2020
CROSSREFS
Cf. A063443 and A211348 (tiling an n X n square with smaller squares).
Cf. A028420 (tiling an n X n square with monomers and dimers).
Sequence in context: A196595 A055914 A255816 * A253224 A334979 A183535
KEYWORD
nonn,easy
AUTHOR
STATUS
approved