The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A335502 Triangle read by rows, 0 <= k < n, n >= 1: T(n,k) is the eventual period of the sequence x(j) (or 0 if x(j) never enters a cycle) defined as follows: x(0) = 1 and for j > 1 x(j) is obtained from 2*x(j-1) by deleting all occurrences of the digit k in base n. 4
 0, 1, 1, 4, 1, 1, 2, 1, 1, 0, 4, 1, 1, 3, 1, 12, 2, 1, 6, 1, 4, 78, 1, 1, 6, 1, 3, 6, 3, 1, 1, 0, 1, 0, 0, 0, 6, 1, 1, 18, 1, 4, 36, 4, 1, 36, 4, 1, 4, 1, 8, 4, 72, 1, 540, 100, 1, 1, 16, 1, 4, 17, 0, 1, 8, 4, 90, 2, 1, 12, 1, 4, 14, 6, 1, 4, 4, 240 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS T(1,0) = 0 is defined in order to make the triangle of numbers regular. One way of getting T(n,k) = 0 is to have x(j) = x(i)*n^e for some j > i and e > 0. For k < n <= 48, this is the only way to get T(n,k) = 0 (but see A335506 for another situation where the x-sequence is not periodic). T(n,k) = 1 whenever k is a power of 2 and k > 1. It seems that k = 0 and k = n-1 often lead to particularly long cycles. LINKS Pontus von Brömssen, Rows n = 1..48, flattened EXAMPLE Triangle begins:    n\k  0   1   2   3   4   5   6   7   8   9  10  11   ---------------------------------------------------    1:   0    2:   1   1    3:   4   1   1    4:   2   1   1   0    5:   4   1   1   3   1    6:  12   2   1   6   1   4    7:  78   1   1   6   1   3   6    8:   3   1   1   0   1   0   0   0    9:   6   1   1  18   1   4  36   4   1   10:  36   4   1   4   1   8   4  72   1 540   11: 100   1   1  16   1   4  17   0   1   8   4   12:  90   2   1  12   1   4  14   6   1   4   4 240 For n = 10 and k = 5, the x-sequence starts 1, 2, 4, 8, 16, 32, 64, 128, 26, 2, and then repeats with a period of 8, so T(10,5) = 8. T(10,0) = 36, because A242350 eventually enters a cycle of length 36. For n=11 and k=7, the x-sequence starts (in base 11) 1, 2, 4, 8, 15, 2A, 59, 10. Disregarding trailing zeros, the sequence then repeats with period 7 and x(i+7*j) = x(i)*11^j for positive i and j. The x-sequence itself is therefore not eventually periodic, so T(11,7)=0. PROG (Python) from sympy.ntheory.factor_ import digits from functools import reduce def drop(x, n, k):   # Drop all digits k from x in base n.   return reduce(lambda x, j:n*x+j if j!=k else x, digits(x, n)[1:], 0) def cycle_length(n, k, m):   # Brent's algorithm for finding cycle length.   # Note: The function may hang if the sequence never enters a cycle.   if (m, n, k)==(5, 10, 7):     return 0 # A little cheating; see A335506.   p=1   length=0   tortoise=hare=1   nz=0   while True:     hare=drop(m*hare, n, k)     while hare and hare%n==0:       hare//=n       nz+=1 # Keep track of the number of trailing zeros.     length+=1     if tortoise==hare:       break     if p==length:       tortoise=hare       nz=0       p*=2       length=0   return length if not nz else 0 def A335502(n, k):   return cycle_length(n, k, 2) if n>1 else 0 CROSSREFS Cf. A242350. Cf. A335503, A335504, A335505, A335506. Cf. A243846, A306569, A306773. Sequence in context: A183104 A183102 A178649 * A119591 A333782 A304876 Adjacent sequences:  A335499 A335500 A335501 * A335503 A335504 A335505 KEYWORD nonn,base,tabl AUTHOR Pontus von Brömssen, Jun 13 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 16:20 EDT 2020. Contains 337383 sequences. (Running on oeis4.)