login
A335438
Number of partitions of k_n into two distinct parts (s,t) such that k_n | s*t, where k_n = A335437(n).
1
1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 3, 2, 2, 1, 4, 1, 1, 3, 1, 4, 2, 1, 1, 5, 2, 1, 3, 1, 5, 3, 2, 1, 1, 4, 6, 1, 2, 1, 2, 1, 3, 6, 1, 4, 1, 1, 2, 1, 7, 1, 1, 5, 4, 3, 2, 2, 7, 1, 1, 1, 2, 1, 5, 8, 3, 1, 4, 1, 1, 1, 3, 8, 2, 1, 1, 6, 1, 3, 2, 1, 1, 2, 9, 5, 1, 1, 2, 1, 3
OFFSET
1,4
COMMENTS
a(n) >= 1.
EXAMPLE
a(2) = 1; A335437(2) = 16 has exactly one partition into two distinct parts (12,4), such that 16 | 12*4 = 48. Therefore, a(2) = 1.
MATHEMATICA
Table[If[Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[(n - 1)/2]}] > 0, Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[(n - 1)/2]}], {}], {n, 400}] // Flatten
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 10 2020
STATUS
approved