login
Triangle T(n,d) read by rows: the number of mixed trees with n>=1 nodes and 0<=d<n arcs.
6

%I #22 Mar 23 2023 19:51:26

%S 1,1,1,1,2,3,2,5,10,8,3,12,32,40,27,6,30,99,178,187,91,11,74,298,692,

%T 1019,854,350,23,188,890,2538,4751,5692,4074,1376,47,478,2627,8886,

%U 20260,31188,31856,19602,5743,106,1235,7734,30270,81170,152509,200413,177266,96035,24635

%N Triangle T(n,d) read by rows: the number of mixed trees with n>=1 nodes and 0<=d<n arcs.

%H Andrew Howroyd, <a href="/A335362/b335362.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows).

%H R. J. Mathar, <a href="/A335362/a335362.pdf">Mixed Trees A335362</a>

%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>

%e The triangle starts

%e 1;

%e 1, 1;

%e 1, 2, 3;

%e 2, 5,10, 8;

%e 3,12,32,40,27;

%e There are T(3,1)=2 mixed trees on 3 nodes with one directed edge (the edge can point towards the middle node or away from it).

%o (PARI) \\ Here R(n) is rooted mixed trees as g.f.

%o EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}

%o R(n) = {my(p=x+O(x^2)); for(n=2, n, p=x*EulerMTS(2*y*p + p)); p}

%o T(n) = {my(p=R(n)); [Vecrev(p) | p<-Vec(p + (subst(subst(p + O(x*x^(n\2)), x, x^2), y, y^2) - (2*y+1)*p^2)/2)]}

%o { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ _Andrew Howroyd_, Mar 23 2023

%Y Cf. A000055 (column d=0), A000238 (diagonal d=n-1), A000106 (column d=1), A006965 (row sums), A335601 (subdiagonal d=n-2).

%K nonn,tabl

%O 1,5

%A _R. J. Mathar_, Jun 03 2020

%E Completed row n=9. - _R. J. Mathar_, Jun 11 2020

%E Terms a(46) and beyond from _Andrew Howroyd_, Mar 23 2023