login
A335182
Sum of the refactorable divisors of n.
8
1, 3, 1, 3, 1, 3, 1, 11, 10, 3, 1, 15, 1, 3, 1, 11, 1, 30, 1, 3, 1, 3, 1, 47, 1, 3, 10, 3, 1, 3, 1, 11, 1, 3, 1, 78, 1, 3, 1, 51, 1, 3, 1, 3, 10, 3, 1, 47, 1, 3, 1, 3, 1, 30, 1, 67, 1, 3, 1, 75, 1, 3, 10, 11, 1, 3, 1, 3, 1, 3, 1, 182, 1, 3, 1, 3, 1, 3, 1, 131, 10, 3, 1, 99
OFFSET
1,2
COMMENTS
Inverse Möbius transform of n * c(n), where c(n) is the characteristic function of refactorable numbers (A336040). - Wesley Ivan Hurt, Jun 21 2024
LINKS
Eric Weisstein's World of Mathematics, Refactorable Number
FORMULA
a(n) = Sum_{d|n} d * c(d), where c = A336040.
a(n) = Sum_{d|n} d * (1 - ceiling(d/tau(d)) + floor(d/tau(d))), where tau(n) is the number of divisors of n (A000005).
a(n) = A349322(n) - A349658(n). - Antti Karttunen, Nov 24 2021
a(p) = 1 for odd primes p. - Wesley Ivan Hurt, Nov 28 2021
EXAMPLE
a(6) = 3; The divisors of 6 are {1,2,3,6}. 1 and 2 are refactorable since d(1) = 1|1 and d(2) = 2|2, so a(6) = 1 + 2 = 3.
a(7) = 1; The divisors of 7 are {1,7} and 1 is the only refactorable divisor of 7. So a(7) = 1.
a(8) = 11; The divisors of 8 are {1,2,4,8}. 1, 2 and 8 are refactorable since d(1) = 1|1, d(2) = 2|2 and d(8) = 4|8, so a(8) = 1 + 2 + 8 = 11.
a(9) = 10; The divisors of 9 are {1,3,9}. 1 and 9 are refactorable since d(1) = 1|1 and d(9) = 3|9, so a(9) = 1 + 9 = 10.
MATHEMATICA
a[n_] := DivisorSum[n, # &, Divisible[#, DivisorSigma[0, #]] &]; Array[a, 80] (* Amiram Eldar, Nov 24 2021 *)
PROG
(PARI) isr(n) = n%numdiv(n)==0; \\ A033950
a(n) = sumdiv(n, d, if (isr(d), d)); \\ Michel Marcus, Jul 20 2020
CROSSREFS
Cf. A000005 (tau), A033950 (refactorable numbers), A336040 (refactorable characteristic), A336041 (number of refactorable divisors), A335665 (their product).
Difference of A349322 and A349658.
Sequence in context: A319137 A074122 A372834 * A319992 A255894 A377403
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Jul 17 2020.
STATUS
approved