login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Nim n-th power of 4.
1

%I #20 Jun 26 2020 09:18:27

%S 1,4,6,14,5,2,8,11,7,10,3,12,13,9,15,1,4,6,14,5,2,8,11,7,10,3,12,13,9,

%T 15,1,4,6,14,5,2,8,11,7,10,3,12,13,9,15,1,4,6,14,5,2,8,11,7,10,3,12,

%U 13,9,15,1,4,6,14,5,2,8,11,7,10,3,12,13,9,15,1,4

%N Nim n-th power of 4.

%H J. H. Conway, <a href="https://doi.org/10.1016/0012-365X(90)90008-6">Integral lexicographic codes</a>, Discrete Mathematics 83.2-3 (1990): 219-235. See Table 3.

%H <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).

%F a(n+15) = a(n). - _Rémy Sigrist_, Jun 12 2020

%F G.f.: (1 + 4*x + 6*x^2 + 14*x^3 + 5*x^4 + 2*x^5 + 8*x^6 + 11*x^7 + 7*x^8 + 10*x^9 + 3*x^10 + 12*x^11 + 13*x^12 + 9*x^13 + 15*x^14) / (1 - x^15). - _Colin Barker_, Jun 16 2020

%o (PARI) Vec((1 + 4*x + 6*x^2 + 14*x^3 + 5*x^4 + 2*x^5 + 8*x^6 + 11*x^7 + 7*x^8 + 10*x^9 + 3*x^10 + 12*x^11 + 13*x^12 + 9*x^13 + 15*x^14) / (1 - x^15) + O(x^80)) \\ _Colin Barker_, Jun 16 2020

%o (PARI) a(n)=[1, 4, 6, 14, 5, 2, 8, 11, 7, 10, 3, 12, 13, 9, 15][n%15+1]; \\ _Joerg Arndt_, Jun 16 2020

%Y A row of the array in A335162.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Jun 12 2020

%E More terms from _Rémy Sigrist_, Jun 12 2020