login
a(n) = nim-product of 2^4 and 2^n.
2

%I #15 Jun 12 2020 12:24:37

%S 16,32,64,128,24,44,75,141,4096,8192,16384,32768,6144,11264,19200,

%T 36096,1048576,2097152,4194304,8388608,1572864,2883584,4915200,

%U 9240576,268435456,536870912,1073741824,2147483648,402653184,738197504,1258291200,2365587456

%N a(n) = nim-product of 2^4 and 2^n.

%H Rémy Sigrist, <a href="/A335161/b335161.txt">Table of n, a(n) for n = 0..1000</a>

%H J. H. Conway, <a href="https://doi.org/10.1016/0012-365X(90)90008-6">Integral lexicographic codes</a>, Discrete Mathematics 83.2-3 (1990): 219-235. See Table 4.

%H Rémy Sigrist, <a href="/A335161/a335161.gp.txt">PARI program for A335161</a>

%F Conjectures from _Colin Barker_, Jun 11 2020: (Start)

%F G.f.: (16 + 32*x + 64*x^2 + 128*x^3 + 24*x^4 + 44*x^5 + 75*x^6 + 141*x^7) / ((1 - 2*x)*(1 + 2*x)*(1 + 4*x^2)*(1 + 16*x^4)).

%F a(n) = 256*a(n-8) for n>7.

%F (End)

%o (PARI) See Links section.

%Y Row 4 of array in A223541.

%K nonn

%O 0,1

%A _N. J. A. Sloane_, Jun 08 2020

%E More terms from _Rémy Sigrist_, Jun 10 2020