login
a(n) = nim-product of 2^2 and 2^n.
2

%I #20 Jun 12 2020 12:24:23

%S 4,8,6,11,64,128,96,176,1024,2048,1536,2816,16384,32768,24576,45056,

%T 262144,524288,393216,720896,4194304,8388608,6291456,11534336,

%U 67108864,134217728,100663296,184549376,1073741824,2147483648,1610612736,2952790016,17179869184

%N a(n) = nim-product of 2^2 and 2^n.

%H Rémy Sigrist, <a href="/A335159/b335159.txt">Table of n, a(n) for n = 0..1000</a>

%H J. H. Conway, <a href="https://doi.org/10.1016/0012-365X(90)90008-6">Integral lexicographic codes</a>, Discrete Mathematics 83.2-3 (1990): 219-235. See Table 4.

%F Conjectures from _Colin Barker_, Jun 11 2020: (Start)

%F G.f.: (4 + 8*x + 6*x^2 + 11*x^3) / ((1 - 2*x)*(1 + 2*x)*(1 + 4*x^2)).

%F a(n) = 16*a(n-4) for n>3.

%F (End)

%Y Row 2 of array in A223541.

%K nonn

%O 0,1

%A _N. J. A. Sloane_, Jun 08 2020