login
A335134
Fixed points of A335133.
1
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 28, 29, 30, 31, 32, 33, 36, 37, 58, 59, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 116, 117, 118, 119, 124, 125, 126, 127, 128, 129, 134, 135, 146, 147, 148, 149, 234, 235, 236, 237, 248, 249, 254, 255, 256
OFFSET
1,3
COMMENTS
The EQ-triangles generated from the binary expansion of the terms of this sequence have reflection symmetry through axis U-U:
. U
. .___________
. \ . /
. \ . /
. \ .
. \ / .
. \ / U
. v
EXAMPLE
A335133(28) = 28, so 28 belongs to this sequence.
PROG
(PARI) is(n) = {
my (b=binary(n), v=0);
forstep (x=#b-1, 0, -1,
if (b[1], v+=2^x);
b=vector(#b-1, k, b[k]==b[k+1])
);
v==n
}
CROSSREFS
Cf. A335133.
Sequence in context: A032987 A174876 A092597 * A334918 A354220 A125506
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, May 24 2020
STATUS
approved