login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers whose prime exponents generates rotationally symmetric XOR-triangles.
1

%I #10 May 24 2020 18:33:30

%S 1,2,4,8,16,32,42,64,70,128,256,390,512,1024,1122,1764,2002,2048,2210,

%T 4096,4900,6270,7854,8192,9450,15470,15750,16384,26460,32768,36366,

%U 54978,58786,65536,66990,73500,74088,86710,108290,123480,131072,152100,162690

%N Numbers whose prime exponents generates rotationally symmetric XOR-triangles.

%C For any positive number with prime factorization Product_{k = 1..m} prime(k)^e_k (where prime(k) denotes the k-th prime number and e_m > 0), we build a XOR-triangle with (e_m, ..., e_1) as top row, and having each entry in the subsequent rows be the XOR of the two values above it. This sequence lists integers whose XOR-triangle has 3-fold rotational symmetry. A334990 gives the second row of such XOR-triangles for numbers that are not powers of 2.

%C This sequence has strong connections with A334556: for any n > 0 and k > 0, A019565(A334556(n))^k belongs to this sequence.

%C Every power of 2 belongs to the sequence.

%C If m belongs to this sequence, then m^2 also belongs to this sequence.

%H <a href="/index/X#XOR-triangles">Index entries for sequences related to XOR-triangles</a>

%F A067029(a(n)) = A071178(a(n)).

%e The number 15750 = 7^1 * 5^2 * 3^3 * 2^1 yields the following XOR-triangle:

%e 1 2 3 1

%e 3 1 2

%e 2 3

%e 1

%e As this XOR-triangle has rotational symmetry, 15750 belongs to this sequence.

%o (PARI) is(n) = {

%o my (e);

%o if (n==1, e=[],

%o my (f=factor(n), m=primepi(f[#f~,1]));

%o e=vector(m, k, valuation(n, prime(m+1-k)))

%o );

%o my (x=e);

%o for (k=1, #e,

%o if (e[k]!=x[#x], return (0));

%o if (x[1]!=e[#e+1-k], return (0));

%o x=vector(#x-1, k, bitxor(x[k], x[k+1]));

%o );

%o return (1);

%o }

%Y Cf. A019565, A067029, A071178, A334556, A334990.

%K nonn,base

%O 1,2

%A _Rémy Sigrist_, May 19 2020