login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A334979 a(n) is the total number of down steps between the (n-1)-th and n-th up steps in all 3_1-Dyck paths of length 4*n. A 3_1-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -1. 5
0, 1, 16, 132, 1034, 8134, 64880, 525132, 4307512, 35750473, 299759200, 2535849836, 21619615164, 185582339740, 1602675301920, 13915031036412, 121396437548136, 1063653520870612, 9355905795325888, 82585983533819920, 731350409249262330, 6495673923406863630 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For n = 1, there is no (n-1)-th up step, a(1) = 1 is the total number of down steps before the first up step.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..1027

A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.

FORMULA

a(0) = 0 and a(n) = binomial(4*n+6, n+1)/(2*n+3) - 4*binomial(4*n+2, n)/(2*n+1) for n > 0.

EXAMPLE

For n = 2, the 3_1-Dyck paths are UDDDDUDD, UDDDUDDD, UDDUDDDD, UDUDDDDD, UUDDDDDD, DUDDDUDD, DUDDUDDD, DUDUDDDD, DUUDDDDD. Therefore the total number of down steps between the first and second up steps is a(2) = 4 + 3 + 2 + 1 + 0 + 3 + 2 + 1 + 0 = 16.

MATHEMATICA

a[0] = 0; a[n_] := Binomial[4*n+6, n+1]/(2*n + 3) - 4 * Binomial[4*n + 2, n]/(2*n + 1); Array[a, 22, 0]

PROG

(SageMath) [binomial(4*n + 6, n + 1)/(2*n + 3) - 4*binomial(4*n + 2, n)/(2*n + 1) if n > 0 else 0 for n in srange(30)] # Benjamin Hackl, May 19 2020

CROSSREFS

Cf. A334976, A334977, A334978, A334980.

Sequence in context: A255816 A335560 A253224 * A183535 A197278 A237880

Adjacent sequences:  A334976 A334977 A334978 * A334980 A334981 A334982

KEYWORD

nonn,easy

AUTHOR

Sarah Selkirk, May 18 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 13:59 EDT 2022. Contains 354092 sequences. (Running on oeis4.)