login
A334908
Area/6 of primitive Pythagorean triangles generated by {{2, 0}, {1, -1}}^n * {{2}, {1}}, for n >= 0.
1
1, 10, 220, 3080, 52976, 818720, 13333440, 211474560, 3398520576, 54257082880, 869067996160, 13897453373440, 222420341682176, 3558236809994240, 56935698394234880, 910939899548958720, 14575288593717067776, 233202615903456460800
OFFSET
0,2
COMMENTS
Matrix {{2, 0}, {1, -1}} is [g_{-2}] given by Firstov in eq. (24).
These primitive Pythagorean triples are also given by Lee Price as (M_2)^n (3,4,5)^T (T for transposed), with M_2 = {{2, 1, 1}, {2, -2, 2}, {2, -1, 3}}.
For a primitive Pythagorean triangle (x, y, z) = (u^2-v^2, 2u*v, u^2+v^2) the area is A = x*y/2 = u*v*(u^2 - v^2) = z*h/2 with altitude h, and h is an irreducible fraction. Here:
x(n) = A084175(n+2).
y(n) = 4*(A084175(n+1) - A084175(n)) = A054881(n+2).
= 2*A192382(n+1) = 4*A003683(n+1).
z(n) = A084175(n+2) + 2*A084175(n+1) - 4*A084175(n).
= A108924(n+2)/2 = A084175(n+2) + 2*A139818(n+1).
= A000302(n+1) + A139818(n+1)).
u(n) = A000079(n+1) = 2^(n+1).
v(n) = A001045(n+1) = (2^(n+1) + (-1)^n)/3.
For the area A(n): Limit_{n -> oo} (3^3/(2^(4*n+7)))*A(n) = 1. See the formula section. - Wolfdieter Lang, Jun 14 2020
LINKS
V. E. Firstov, A Special Matrix Transformation Semigroup of Primitive Pairs and the Genealogy of Pythagorean Triples; Mathematical Notes, volume 84, number 2, August 2008, pages 263-279; Link of the page (for the Russian article).
H. Lee Price, The Pythagorean Tree: A New Species, arXiv:0809.4324 [math.HO], 2008-2011
R. Steiner, Spezielle Folge primitiver pythagoräischer Dreiecke, researchgate.net, 2020
FORMULA
a(n) = ( 2^(4*n+6) - 3*2^(2*n+1) - 3*(-2)^(3*n+3) - (-2)^n )/3^4.
G.f.: 1 / ((1 + 2*x)*(1 - 4*x)*(1 + 8*x)*(1 - 16*x)). - Colin Barker, Jun 11 2020
E.g.f.: (1/81)*(24*exp(-8*x) - exp(-2*x) - 6*exp(4*x) + 64*exp(16*x)). - G. C. Greubel, Feb 18 2023
EXAMPLE
a(0) = 3*4/12 = 1 for the triangle (3, 4, 5).
MATHEMATICA
Table[(2^(2*n+1)*(2^(2*n+5) -3) + (-2)^n*(3*2^(2*n+3) -1))/3^4, {n, 0, 40}]
PROG
(Magma) [(2^(2*n+1)*(2^(2*n+5) -3) +(-2)^n*(3*2^(2*n+3) -1))/81: n in [0..40]]; // G. C. Greubel, Feb 18 2023
(SageMath) [(2^(2*n+1)*(2^(2*n+5) -3) +(-2)^n*(3*2^(2*n+3) -1))/81 for n in range(41)] # G. C. Greubel, Feb 18 2023
KEYWORD
nonn,easy
AUTHOR
Ralf Steiner, May 16 2020
STATUS
approved