login
A334906
Numbers k such that binomial(prime(k+2), prime(k+1)) and binomial(prime(k+1), prime(k)) are coprime.
2
1, 2, 6, 7, 12, 19, 20, 26, 33, 34, 37, 38, 43, 44, 45, 56, 60, 63, 68, 71, 75, 78, 82, 83, 86, 89, 94, 95, 106, 112, 115, 116, 122, 135, 140, 141, 142, 148, 151, 152, 166, 169, 175, 178, 197, 198, 206, 210, 211, 226, 227, 233, 236, 244, 251, 264, 285, 286, 287, 288, 301, 302, 313, 314, 321, 322
OFFSET
1,2
COMMENTS
Numbers k such that A058078(k)=1.
If prime(k+1)-prime(k)=2 and prime(k+2)-prime(k+1)=4, then k is in the sequence unless prime(k) == 3 (mod 8) or prime(k) == 5 (mod 9).
If prime(k+1)-prime(k)=4 and prime(k+2)-prime(k+1)=2, then k is in the sequence unless prime(k) == 7 (mod 8) or prime(k) == 7 (mod 9).
LINKS
EXAMPLE
a(3)=6 is in the sequence because the 6th, 7th and 8th primes are 13, 17 and 19, and binomial(17,13)=2380 and binomial(19,17)=171 are coprime.
MAPLE
filter:= n -> igcd(binomial(ithprime(n+2), ithprime(n+1)), binomial(ithprime(n+1), ithprime(n)))=1:
select(filter, [$1..1000]);
PROG
(PARI) isok(k) = gcd(binomial(prime(k+2), prime(k+1)), binomial(prime(k+1), prime(k))) == 1; \\ Michel Marcus, Jul 02 2021
CROSSREFS
Cf. A058078.
Sequence in context: A105329 A124319 A325262 * A078471 A127406 A092310
KEYWORD
nonn
AUTHOR
Robert Israel, May 15 2020
STATUS
approved