login
A334898
Bi-unitary practical numbers: numbers m such that every number 1 <= k <= bsigma(m) is a sum of distinct bi-unitary divisors of m, where bsigma is A188999.
4
1, 2, 6, 8, 24, 30, 32, 40, 42, 48, 54, 56, 66, 72, 78, 88, 96, 104, 120, 128, 160, 168, 192, 210, 216, 224, 240, 264, 270, 280, 288, 312, 320, 330, 336, 352, 360, 378, 384, 390, 408, 416, 432, 440, 448, 456, 462, 480, 486, 504, 510, 512, 520, 528, 544, 546, 552
OFFSET
1,2
COMMENTS
Includes 1 and all the odd powers of 2 (A004171). The other terms are a subset of bi-unitary abundant numbers (A292982) and bi-unitary pseudoperfect numbers (A292985).
LINKS
MATHEMATICA
biunitaryDivisorQ[div_, n_] := If[Mod[#2, #1] == 0, Last @ Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]] &, {#1, #2/#1}]] == 1, False] & @@ {div, n}; bdivs[n_] := Module[{d = Divisors[n]}, Select[d, biunitaryDivisorQ[#, n] &]]; bPracQ[n_] := Module[{d = bdivs[n], sd, x}, sd = Plus @@ d; Min @ CoefficientList[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, sd}], x] > 0]; Select[Range[1000], bPracQ]
CROSSREFS
The bi-unitary version of A005153.
Sequence in context: A344914 A068496 A340810 * A081957 A334901 A279732
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 16 2020
STATUS
approved