login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = ceiling (n / A000005(n)).
2

%I #18 Jun 20 2022 14:45:04

%S 1,1,2,2,3,2,4,2,3,3,6,2,7,4,4,4,9,3,10,4,6,6,12,3,9,7,7,5,15,4,16,6,

%T 9,9,9,4,19,10,10,5,21,6,22,8,8,12,24,5,17,9,13,9,27,7,14,7,15,15

%N a(n) = ceiling (n / A000005(n)).

%C ceiling (n / A000005(n)) - floor (n / A000005(n)) = 0 for A033950(n).

%H Robert Israel, <a href="/A334762/b334762.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = ceiling (n / A000005(n)).

%e a(1) = ceiling (1 / 1) = 1;

%e a(5) = ceiling (5 / 2) = 3;

%p seq(ceil(n/numtheory:-tau(n)), n=1..100); # _Robert Israel_, May 13 2020

%t a[n_] := Ceiling[n / DivisorSigma[0, n]]; Array[a, 60] (* _Amiram Eldar_, May 10 2020 *)

%o (Python)

%o from sympy import divisor_count

%o def A334762(n): return (a := divmod(n,divisor_count(n)))[0] + int((a[1] > 0) == True) # _Chai Wah Wu_, Jun 20 2022

%Y Cf. A000005, A033950, A078709.

%K nonn,look

%O 1,3

%A _Ctibor O. Zizka_, May 10 2020