login
A334762
a(n) = ceiling (n / A000005(n)).
2
1, 1, 2, 2, 3, 2, 4, 2, 3, 3, 6, 2, 7, 4, 4, 4, 9, 3, 10, 4, 6, 6, 12, 3, 9, 7, 7, 5, 15, 4, 16, 6, 9, 9, 9, 4, 19, 10, 10, 5, 21, 6, 22, 8, 8, 12, 24, 5, 17, 9, 13, 9, 27, 7, 14, 7, 15, 15
OFFSET
1,3
COMMENTS
ceiling (n / A000005(n)) - floor (n / A000005(n)) = 0 for A033950(n).
LINKS
FORMULA
a(n) = ceiling (n / A000005(n)).
EXAMPLE
a(1) = ceiling (1 / 1) = 1;
a(5) = ceiling (5 / 2) = 3;
MAPLE
seq(ceil(n/numtheory:-tau(n)), n=1..100); # Robert Israel, May 13 2020
MATHEMATICA
a[n_] := Ceiling[n / DivisorSigma[0, n]]; Array[a, 60] (* Amiram Eldar, May 10 2020 *)
PROG
(Python)
from sympy import divisor_count
def A334762(n): return (a := divmod(n, divisor_count(n)))[0] + int((a[1] > 0) == True) # Chai Wah Wu, Jun 20 2022
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Ctibor O. Zizka, May 10 2020
STATUS
approved