login
a(n) = 23*a(n-1) - a(n-2) + 1 for n > 1, a(0)=0, a(1)=1.
3

%I #54 Apr 26 2021 10:20:13

%S 0,1,24,552,12673,290928,6678672,153318529,3519647496,80798573880,

%T 1854847551745,42580695116256,977501140122144,22439945527693057,

%U 515141245996818168,11825808712399124808,271478459139183052417,6232178751488811080784,143068632825103471805616

%N a(n) = 23*a(n-1) - a(n-2) + 1 for n > 1, a(0)=0, a(1)=1.

%H Michael De Vlieger, <a href="/A334673/b334673.txt">Table of n, a(n) for n = 0..735</a>

%H Francesca Arici and Jens Kaad, <a href="https://arxiv.org/abs/2012.11186">Gysin sequences and SU(2)-symmetries of C*-algebras</a>, arXiv:2012.11186 [math.OA], 2020.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (24,-24,1).

%F a(n) = A004254(n)*A004254(n+1)/5 = A160695(n+1)/5.

%F G.f.: x/((1-x)*(x^2-23*x+1)). - _Alois P. Heinz_, Sep 11 2020

%t CoefficientList[Series[x/((1 - x) (x^2 - 23 x + 1)), {x, 0, 18}], x] (* _Michael De Vlieger_, Apr 07 2021 *)

%Y Cf. A004254, A097778 (first differences).

%Y Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

%K nonn,easy

%O 0,3

%A _Francesca Arici_, Sep 11 2020

%E a(13)-a(14) corrected and more terms added by _Alois P. Heinz_, Sep 11 2020