login
A334601
Positive integers m such that sum of cubes of the digits of m, t=A055012(m), is a multiple of m (m/A055012(m) is an integer >= 1).
0
1, 2, 3, 4, 5, 6, 7, 8, 9, 24, 27, 37, 48, 153, 370, 371, 407, 459
OFFSET
1,2
COMMENTS
Corresponding values of t: 1, 8, 27, 64, 125, 216, 343, 512, 729, 72, 351, 370, 576, 153, 370, 371, 407, 918 (first 9 terms are all cubes).
Corresponding values of t/m: 1, 4, 9, 16, 25, 36, 49, 64, 81, 3, 13, 10, 12, 1, 1, 1, 1, 2 (first 9 terms are all squares).
The subsequence of numbers m such that sum of cubes of its digits is equal to m is A046197 \ {0}. - Bernard Schott, May 11 2020
EXAMPLE
m = 459, t = 4^3 + 5^3 + 9^3 = 918, t/m = 2.
MATHEMATICA
Select[Range[500], Divisible[Plus @@ (IntegerDigits[#]^3), #] &] (* Amiram Eldar, May 11 2020 *)
PROG
(PARI) isok(m) = my(d=digits(m)); sum(k=1, #d, d[k]^3) % m == 0; \\ Michel Marcus, May 14 2020
KEYWORD
base,nonn,fini,full
AUTHOR
Zak Seidov, May 07 2020 and May 12 2020
STATUS
approved